MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C87800 Brass

S44535 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
25
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 77
86
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 450
590
Tensile Strength: Yield (Proof), MPa 290
350

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 21
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
44
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 200
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 5.6
8.3
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
80 to 84.2
Iron (Fe), % 73.2 to 79.6
0 to 0.15
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.3 to 0.8
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0 to 0.5
3.8 to 4.2
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5