MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. C94300 Bronze

S44535 stainless steel belongs to the iron alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
87
Elongation at Break, % 28
9.7
Poisson's Ratio 0.27
0.36
Shear Modulus, GPa 78
32
Tensile Strength: Ultimate (UTS), MPa 450
180
Tensile Strength: Yield (Proof), MPa 290
120

Thermal Properties

Latent Heat of Fusion, J/g 290
150
Maximum Temperature: Mechanical, °C 1000
110
Melting Completion (Liquidus), °C 1430
820
Melting Onset (Solidus), °C 1390
760
Specific Heat Capacity, J/kg-K 480
320
Thermal Conductivity, W/m-K 21
63
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 7.7
9.3
Embodied Carbon, kg CO2/kg material 2.4
2.9
Embodied Energy, MJ/kg 34
47
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
15
Resilience: Unit (Modulus of Resilience), kJ/m3 200
77
Stiffness to Weight: Axial, points 14
5.2
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 16
5.2
Strength to Weight: Bending, points 17
7.4
Thermal Diffusivity, mm2/s 5.6
21
Thermal Shock Resistance, points 15
7.1

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
67 to 72
Iron (Fe), % 73.2 to 79.6
0 to 0.15
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
23 to 27
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.050
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0.030 to 0.2
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0