MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. N10003 Nickel

S44535 stainless steel belongs to the iron alloys classification, while N10003 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
42
Fatigue Strength, MPa 210
260
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 78
80
Shear Strength, MPa 290
540
Tensile Strength: Ultimate (UTS), MPa 450
780
Tensile Strength: Yield (Proof), MPa 290
320

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 1000
930
Melting Completion (Liquidus), °C 1430
1520
Melting Onset (Solidus), °C 1390
1460
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
13
Embodied Energy, MJ/kg 34
180
Embodied Water, L/kg 140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 200
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 5.6
3.1
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 20 to 24
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.5
0 to 0.35
Iron (Fe), % 73.2 to 79.6
0 to 5.0
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0 to 0.050
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0.030 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5