MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. S31100 Stainless Steel

Both S44535 stainless steel and S31100 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
4.5
Fatigue Strength, MPa 210
330
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
79
Shear Strength, MPa 290
580
Tensile Strength: Ultimate (UTS), MPa 450
1000
Tensile Strength: Yield (Proof), MPa 290
710

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 450
470
Maximum Temperature: Mechanical, °C 1000
1100
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.4
3.1
Embodied Energy, MJ/kg 34
44
Embodied Water, L/kg 140
170

Common Calculations

PREN (Pitting Resistance) 22
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
36
Strength to Weight: Bending, points 17
29
Thermal Diffusivity, mm2/s 5.6
4.2
Thermal Shock Resistance, points 15
28

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 20 to 24
25 to 27
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 73.2 to 79.6
63.6 to 69
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.030 to 0.2
0 to 0.25