MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. S41041 Stainless Steel

Both S44535 stainless steel and S41041 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
17
Fatigue Strength, MPa 210
350
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 290
560
Tensile Strength: Ultimate (UTS), MPa 450
910
Tensile Strength: Yield (Proof), MPa 290
580

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1000
740
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.2
Embodied Energy, MJ/kg 34
31
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 22
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
32
Strength to Weight: Bending, points 17
27
Thermal Diffusivity, mm2/s 5.6
7.8
Thermal Shock Resistance, points 15
33

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.050
Carbon (C), % 0 to 0.030
0.13 to 0.18
Chromium (Cr), % 20 to 24
11.5 to 13
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 73.2 to 79.6
84.5 to 87.8
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0.3 to 0.8
0.4 to 0.6
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.030 to 0.2
0