MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. AWS E90C-D2

Both S44537 stainless steel and AWS E90C-D2 are iron alloys. They have 75% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is AWS E90C-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
19
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 510
690
Tensile Strength: Yield (Proof), MPa 360
620

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
49
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.6
Embodied Energy, MJ/kg 50
21
Embodied Water, L/kg 140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
130
Resilience: Unit (Modulus of Resilience), kJ/m3 320
1010
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 5.6
13
Thermal Shock Resistance, points 17
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
0 to 0.35
Iron (Fe), % 69 to 78.6
95.5 to 98.6
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
1.0 to 1.9
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0 to 0.9
Sulfur (S), % 0 to 0.0060
0 to 0.030
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5