MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. EN 1.0348 Steel

Both S44537 stainless steel and EN 1.0348 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
110
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
28
Fatigue Strength, MPa 230
160
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 320
250
Tensile Strength: Ultimate (UTS), MPa 510
380
Tensile Strength: Yield (Proof), MPa 360
220

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
50
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.4
1.5
Embodied Energy, MJ/kg 50
19
Embodied Water, L/kg 140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
91
Resilience: Unit (Modulus of Resilience), kJ/m3 320
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
13
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 5.6
13
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.020 to 0.2
Carbon (C), % 0 to 0.030
0 to 0.13
Chromium (Cr), % 20 to 24
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 69 to 78.6
97.5 to 99.98
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0.2 to 1.0
0 to 0.010
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.0060
0 to 0.010
Titanium (Ti), % 0.020 to 0.2
0 to 0.040
Tungsten (W), % 1.0 to 3.0
0
Vanadium (V), % 0
0 to 0.020