MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. EN 1.4405 Stainless Steel

Both S44537 stainless steel and EN 1.4405 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is EN 1.4405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
17
Fatigue Strength, MPa 230
370
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 510
860
Tensile Strength: Yield (Proof), MPa 360
610

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 530
410
Maximum Temperature: Mechanical, °C 1000
870
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 50
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 26
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
130
Resilience: Unit (Modulus of Resilience), kJ/m3 320
950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 5.6
4.6
Thermal Shock Resistance, points 17
29

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 20 to 24
15 to 17
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 69 to 78.6
73.6 to 80.3
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
0.7 to 1.5
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0.1 to 0.6
0 to 0.8
Sulfur (S), % 0 to 0.0060
0 to 0.025
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0