MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. EN 1.4911 Stainless Steel

Both S44537 stainless steel and EN 1.4911 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
11
Fatigue Strength, MPa 230
530
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 320
640
Tensile Strength: Ultimate (UTS), MPa 510
1070
Tensile Strength: Yield (Proof), MPa 360
970

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 530
430
Maximum Temperature: Mechanical, °C 1000
700
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
20
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.4
3.4
Embodied Energy, MJ/kg 50
49
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 26
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 320
2410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
30
Thermal Diffusivity, mm2/s 5.6
5.4
Thermal Shock Resistance, points 17
37

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0 to 0.030
0.050 to 0.12
Chromium (Cr), % 20 to 24
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 69 to 78.6
75.7 to 83.8
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
0.2 to 1.2
Niobium (Nb), % 0.2 to 1.0
0.2 to 0.5
Nitrogen (N), % 0 to 0.040
0 to 0.035
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0.1 to 0.8
Sulfur (S), % 0 to 0.0060
0 to 0.015
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4