MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. EN 1.5510 Steel

Both S44537 stainless steel and EN 1.5510 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
130 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
11 to 21
Fatigue Strength, MPa 230
220 to 330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 320
310 to 380
Tensile Strength: Ultimate (UTS), MPa 510
450 to 1600
Tensile Strength: Yield (Proof), MPa 360
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 50
19
Embodied Water, L/kg 140
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 320
260 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
16 to 57
Strength to Weight: Bending, points 18
17 to 39
Thermal Diffusivity, mm2/s 5.6
14
Thermal Shock Resistance, points 17
13 to 47

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.030
0.25 to 0.3
Chromium (Cr), % 20 to 24
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 69 to 78.6
97.9 to 99.149
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0 to 0.3
Sulfur (S), % 0 to 0.0060
0 to 0.025
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0