MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. EN 1.8201 Steel

Both S44537 stainless steel and EN 1.8201 steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 230
310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
74
Shear Strength, MPa 320
390
Tensile Strength: Ultimate (UTS), MPa 510
630
Tensile Strength: Yield (Proof), MPa 360
450

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1000
450
Melting Completion (Liquidus), °C 1480
1500
Melting Onset (Solidus), °C 1430
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.4
2.5
Embodied Energy, MJ/kg 50
36
Embodied Water, L/kg 140
59

Common Calculations

PREN (Pitting Resistance) 26
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 5.6
11
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 20 to 24
1.9 to 2.6
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 69 to 78.6
93.6 to 96.2
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0.020 to 0.080
Nitrogen (N), % 0 to 0.040
0 to 0.015
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0.1 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.0060
0 to 0.010
Titanium (Ti), % 0.020 to 0.2
0.0050 to 0.060
Tungsten (W), % 1.0 to 3.0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3