MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. Grade Ti-Pd8A Titanium

S44537 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
13
Fatigue Strength, MPa 230
260
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 510
500
Tensile Strength: Yield (Proof), MPa 360
430

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1000
320
Melting Completion (Liquidus), °C 1480
1660
Melting Onset (Solidus), °C 1430
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.4
49
Embodied Energy, MJ/kg 50
840
Embodied Water, L/kg 140
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
65
Resilience: Unit (Modulus of Resilience), kJ/m3 320
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 18
31
Thermal Diffusivity, mm2/s 5.6
8.6
Thermal Shock Resistance, points 17
39

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69 to 78.6
0 to 0.25
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 0 to 0.5
0 to 0.050
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0
Sulfur (S), % 0 to 0.0060
0
Titanium (Ti), % 0.020 to 0.2
98.8 to 99.9
Tungsten (W), % 1.0 to 3.0
0
Residuals, % 0
0 to 0.4