MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C33500 Brass

S44537 stainless steel belongs to the iron alloys classification, while C33500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 21
3.0 to 28
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 80
53 to 91
Shear Modulus, GPa 79
40
Shear Strength, MPa 320
220 to 360
Tensile Strength: Ultimate (UTS), MPa 510
340 to 650
Tensile Strength: Yield (Proof), MPa 360
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1480
930
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 50
45
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 320
69 to 860
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
12 to 22
Strength to Weight: Bending, points 18
13 to 21
Thermal Diffusivity, mm2/s 5.6
37
Thermal Shock Resistance, points 17
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
62 to 65
Iron (Fe), % 69 to 78.6
0 to 0.1
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0
Sulfur (S), % 0 to 0.0060
0
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4