MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C67300 Bronze

S44537 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
12
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 80
91
Shear Modulus, GPa 79
41
Shear Strength, MPa 320
300
Tensile Strength: Ultimate (UTS), MPa 510
500
Tensile Strength: Yield (Proof), MPa 360
340

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
130
Melting Completion (Liquidus), °C 1480
870
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
95
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 50
46
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
55
Resilience: Unit (Modulus of Resilience), kJ/m3 320
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 5.6
30
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
58 to 63
Iron (Fe), % 69 to 78.6
0 to 0.5
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 0.8
2.0 to 3.5
Nickel (Ni), % 0 to 0.5
0 to 0.25
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0.5 to 1.5
Sulfur (S), % 0 to 0.0060
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5