MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C82000 Copper

S44537 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
8.0 to 20
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 80
55 to 95
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 510
350 to 690
Tensile Strength: Yield (Proof), MPa 360
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 1000
220
Melting Completion (Liquidus), °C 1480
1090
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 19
60
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.0
Embodied Energy, MJ/kg 50
77
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 320
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
11 to 22
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 5.6
76
Thermal Shock Resistance, points 17
12 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.5
95.2 to 97.4
Iron (Fe), % 69 to 78.6
0 to 0.1
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 0 to 0.5
0 to 0.2
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.0060
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5