MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C85800 Brass

S44537 stainless steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 21
15
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 80
56
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 510
380
Tensile Strength: Yield (Proof), MPa 360
210

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1480
900
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 21
84
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 50
47
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
48
Resilience: Unit (Modulus of Resilience), kJ/m3 320
210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
13
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 5.6
27
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
57 to 69
Iron (Fe), % 69 to 78.6
0 to 0.5
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 0.8
0 to 0.25
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0.1 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.0060
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3