MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C87900 Brass

S44537 stainless steel belongs to the iron alloys classification, while C87900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
25
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 80
70
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 510
480
Tensile Strength: Yield (Proof), MPa 360
240

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
130
Melting Completion (Liquidus), °C 1480
930
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 50
46
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
100
Resilience: Unit (Modulus of Resilience), kJ/m3 320
270
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 5.6
37
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
63 to 69.2
Iron (Fe), % 69 to 78.6
0 to 0.4
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 0.8
0 to 0.15
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0.1 to 0.6
0.8 to 1.2
Sulfur (S), % 0 to 0.0060
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
30 to 36