MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. S82122 Stainless Steel

Both S44537 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
34
Fatigue Strength, MPa 230
360
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 320
460
Tensile Strength: Ultimate (UTS), MPa 510
680
Tensile Strength: Yield (Proof), MPa 360
450

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 530
430
Maximum Temperature: Mechanical, °C 1000
990
Melting Completion (Liquidus), °C 1480
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 50
37
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 26
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
210
Resilience: Unit (Modulus of Resilience), kJ/m3 320
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 5.6
4.0
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20 to 24
20.5 to 21.5
Copper (Cu), % 0 to 0.5
0.5 to 1.5
Iron (Fe), % 69 to 78.6
68.9 to 75.4
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
1.5 to 2.5
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0.15 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0.1 to 0.6
0 to 0.75
Sulfur (S), % 0 to 0.0060
0 to 0.020
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0