MakeItFrom.com
Menu (ESC)

S44625 Stainless Steel vs. EN 1.4520 Stainless Steel

Both S44625 stainless steel and EN 1.4520 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44625 stainless steel and the bottom bar is EN 1.4520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
26
Fatigue Strength, MPa 240
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 370
310
Tensile Strength: Ultimate (UTS), MPa 590
480
Tensile Strength: Yield (Proof), MPa 360
220

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 1100
870
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
20
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 14
8.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 39
32
Embodied Water, L/kg 160
120

Common Calculations

PREN (Pitting Resistance) 30
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 310
120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.6
5.4
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.025
Chromium (Cr), % 25 to 27.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 69.4 to 74.3
80.1 to 83.9
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.015
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8