MakeItFrom.com
Menu (ESC)

S44625 Stainless Steel vs. EN 1.5501 Steel

Both S44625 stainless steel and EN 1.5501 steel are iron alloys. They have 72% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44625 stainless steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22
12 to 17
Fatigue Strength, MPa 240
180 to 270
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 370
270 to 310
Tensile Strength: Ultimate (UTS), MPa 590
390 to 510
Tensile Strength: Yield (Proof), MPa 360
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 39
18
Embodied Water, L/kg 160
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 310
190 to 460
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
14 to 18
Strength to Weight: Bending, points 20
15 to 18
Thermal Diffusivity, mm2/s 4.6
14
Thermal Shock Resistance, points 19
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.010
0.13 to 0.16
Chromium (Cr), % 25 to 27.5
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 69.4 to 74.3
98.4 to 99.269
Manganese (Mn), % 0 to 0.4
0.6 to 0.8
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.020
0 to 0.025