MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. AISI 317LM Stainless Steel

Both S44626 stainless steel and AISI 317LM stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
46
Fatigue Strength, MPa 230
210
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 83
82
Shear Modulus, GPa 80
79
Shear Strength, MPa 340
410
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 560
420
Maximum Temperature: Mechanical, °C 1100
300
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
14
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.9
4.8
Embodied Energy, MJ/kg 42
65
Embodied Water, L/kg 160
170

Common Calculations

PREN (Pitting Resistance) 30
35
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 300
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.6
3.8
Thermal Shock Resistance, points 18
13

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 25 to 27
18 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 68.1 to 74.1
54.4 to 64.5
Manganese (Mn), % 0 to 0.75
0 to 2.0
Molybdenum (Mo), % 0.75 to 1.5
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
13.5 to 17.5
Nitrogen (N), % 0 to 0.040
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.2 to 1.0
0