MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. EN 1.4578 Stainless Steel

Both S44626 stainless steel and EN 1.4578 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is EN 1.4578 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
51
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 340
400
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 350
200

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 560
410
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
14
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
3.7
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 160
160

Common Calculations

PREN (Pitting Resistance) 30
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 300
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.6
3.9
Thermal Shock Resistance, points 18
12

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.040
Chromium (Cr), % 25 to 27
16.5 to 17.5
Copper (Cu), % 0 to 0.2
3.0 to 3.5
Iron (Fe), % 68.1 to 74.1
62.3 to 68.5
Manganese (Mn), % 0 to 0.75
0 to 2.0
Molybdenum (Mo), % 0.75 to 1.5
2.0 to 2.5
Nickel (Ni), % 0 to 0.5
10 to 11
Nitrogen (N), % 0 to 0.040
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.2 to 1.0
0