MakeItFrom.com
Menu (ESC)

S44626 Stainless Steel vs. EN 1.4983 Stainless Steel

Both S44626 stainless steel and EN 1.4983 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44626 stainless steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 340
430
Tensile Strength: Ultimate (UTS), MPa 540
630
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 560
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
4.1
Embodied Energy, MJ/kg 42
56
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 30
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.6
4.0
Thermal Shock Resistance, points 18
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.060
0.040 to 0.080
Chromium (Cr), % 25 to 27
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 68.1 to 74.1
61.8 to 69.6
Manganese (Mn), % 0 to 0.75
0 to 2.0
Molybdenum (Mo), % 0.75 to 1.5
2.0 to 2.5
Nickel (Ni), % 0 to 0.5
12 to 14
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.2 to 1.0
0.4 to 0.8