MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. AISI 436 Stainless Steel

Both S44627 stainless steel and AISI 436 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 24
25
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 79
77
Shear Modulus, GPa 80
77
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 490
500
Tensile Strength: Yield (Proof), MPa 300
270

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 470
460
Maximum Temperature: Mechanical, °C 1100
880
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
38
Embodied Water, L/kg 160
120

Common Calculations

PREN (Pitting Resistance) 30
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 4.6
6.7
Thermal Shock Resistance, points 16
18

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.12
Chromium (Cr), % 25 to 27.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 69.2 to 74.2
77.8 to 83.3
Manganese (Mn), % 0 to 0.4
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0.75 to 1.3
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.050 to 0.2
0 to 0.8
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030