MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. EN 1.7779 Steel

Both S44627 stainless steel and EN 1.7779 steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is EN 1.7779 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
16
Fatigue Strength, MPa 200
430
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 310
500
Tensile Strength: Ultimate (UTS), MPa 490
810
Tensile Strength: Yield (Proof), MPa 300
660

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 1100
470
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 14
4.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 160
64

Common Calculations

PREN (Pitting Resistance) 30
5.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1150
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 16
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.010
0.17 to 0.23
Chromium (Cr), % 25 to 27.5
3.0 to 3.3
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 69.2 to 74.2
93.8 to 95.4
Manganese (Mn), % 0 to 0.4
0.3 to 0.5
Molybdenum (Mo), % 0.75 to 1.5
0.5 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.010
Vanadium (V), % 0
0.45 to 0.55