MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. EN AC-51200 Aluminum

S44627 stainless steel belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
80
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 24
1.1
Fatigue Strength, MPa 200
100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 490
220
Tensile Strength: Yield (Proof), MPa 300
150

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 17
92
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
74

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.9
9.6
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 220
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
31
Thermal Diffusivity, mm2/s 4.6
39
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 25 to 27.5
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 69.2 to 74.2
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0 to 0.4
0 to 0.55
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.1
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 2.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15