MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. Grade 2 Titanium

S44627 stainless steel belongs to the iron alloys classification, while grade 2 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is grade 2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 24
23
Fatigue Strength, MPa 200
250
Poisson's Ratio 0.27
0.32
Reduction in Area, % 51
37
Shear Modulus, GPa 80
38
Shear Strength, MPa 310
270
Tensile Strength: Ultimate (UTS), MPa 490
420
Tensile Strength: Yield (Proof), MPa 300
360

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 11
9.0

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 14
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.9
31
Embodied Energy, MJ/kg 41
510
Embodied Water, L/kg 160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
92
Resilience: Unit (Modulus of Resilience), kJ/m3 220
600
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 4.6
8.9
Thermal Shock Resistance, points 16
32

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 25 to 27.5
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.2 to 74.2
0 to 0.3
Manganese (Mn), % 0 to 0.4
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.9 to 100
Residuals, % 0
0 to 0.4