MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. 2117 Aluminum

S44635 stainless steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
70
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 23
26
Fatigue Strength, MPa 390
95
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 450
200
Tensile Strength: Ultimate (UTS), MPa 710
300
Tensile Strength: Yield (Proof), MPa 580
170

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 22
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 4.4
8.2
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
64
Resilience: Unit (Modulus of Resilience), kJ/m3 810
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 23
33
Thermal Diffusivity, mm2/s 4.4
59
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 61.5 to 68.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15