MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. A535.0 Aluminum

S44635 stainless steel belongs to the iron alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 23
9.0
Fatigue Strength, MPa 390
95
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
25
Tensile Strength: Ultimate (UTS), MPa 710
250
Tensile Strength: Yield (Proof), MPa 580
120

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 16
100
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
79

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.4
9.3
Embodied Energy, MJ/kg 62
160
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
19
Resilience: Unit (Modulus of Resilience), kJ/m3 810
120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 23
33
Thermal Diffusivity, mm2/s 4.4
42
Thermal Shock Resistance, points 23
11

Alloy Composition

Aluminum (Al), % 0
91.4 to 93.4
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 61.5 to 68.5
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.25
Residuals, % 0
0 to 0.15