MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. ACI-ASTM CF3M Steel

Both S44635 stainless steel and ACI-ASTM CF3M steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
150
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
55
Fatigue Strength, MPa 390
270
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
78
Tensile Strength: Ultimate (UTS), MPa 710
520
Tensile Strength: Yield (Proof), MPa 580
260

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 610
420
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.4
3.8
Embodied Energy, MJ/kg 62
53
Embodied Water, L/kg 170
160

Common Calculations

PREN (Pitting Resistance) 39
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
240
Resilience: Unit (Modulus of Resilience), kJ/m3 810
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.4
4.3
Thermal Shock Resistance, points 23
12

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 24.5 to 26
17 to 21
Iron (Fe), % 61.5 to 68.5
59.9 to 72
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.5 to 4.5
2.0 to 3.0
Nickel (Ni), % 3.5 to 4.5
9.0 to 13
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0.2 to 0.8
0