MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. ASTM A369 Grade FP9

Both S44635 stainless steel and ASTM A369 grade FP9 are iron alloys. Both are furnished in the annealed condition. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
140
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
20
Fatigue Strength, MPa 390
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
75
Shear Strength, MPa 450
300
Tensile Strength: Ultimate (UTS), MPa 710
470
Tensile Strength: Yield (Proof), MPa 580
240

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 22
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
2.0
Embodied Energy, MJ/kg 62
28
Embodied Water, L/kg 170
87

Common Calculations

PREN (Pitting Resistance) 39
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
80
Resilience: Unit (Modulus of Resilience), kJ/m3 810
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.4
6.9
Thermal Shock Resistance, points 23
13

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.15
Chromium (Cr), % 24.5 to 26
8.0 to 10
Iron (Fe), % 61.5 to 68.5
87.1 to 90.3
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 3.5 to 4.5
0.9 to 1.1
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.75
0.5 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0