MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN 1.4369 Stainless Steel

Both S44635 stainless steel and EN 1.4369 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN 1.4369 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
260
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 390
330
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 450
580
Tensile Strength: Ultimate (UTS), MPa 710
850
Tensile Strength: Yield (Proof), MPa 580
390

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 610
420
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.4
3.0
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 39
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
280
Resilience: Unit (Modulus of Resilience), kJ/m3 810
380
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 4.4
4.0
Thermal Shock Resistance, points 23
18

Alloy Composition

Carbon (C), % 0 to 0.025
0.070 to 0.15
Chromium (Cr), % 24.5 to 26
17.5 to 19.5
Iron (Fe), % 61.5 to 68.5
63 to 70.2
Manganese (Mn), % 0 to 1.0
5.0 to 7.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
6.5 to 8.5
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.75
0.5 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0