MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN 1.4613 Stainless Steel

Both S44635 stainless steel and EN 1.4613 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
180
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 390
180
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 81
79
Shear Strength, MPa 450
330
Tensile Strength: Ultimate (UTS), MPa 710
530
Tensile Strength: Yield (Proof), MPa 580
280

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 610
550
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
19
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
38
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 39
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
91
Resilience: Unit (Modulus of Resilience), kJ/m3 810
190
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.4
5.2
Thermal Shock Resistance, points 23
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 24.5 to 26
22 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 61.5 to 68.5
70.3 to 77.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0 to 0.5
Nickel (Ni), % 3.5 to 4.5
0 to 0.5
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0.2 to 0.8
0.2 to 1.0