MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN 1.4986 Stainless Steel

Both S44635 stainless steel and EN 1.4986 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
230
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
18
Fatigue Strength, MPa 390
350
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 450
460
Tensile Strength: Ultimate (UTS), MPa 710
750
Tensile Strength: Yield (Proof), MPa 580
560

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 610
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.4
4.8
Embodied Energy, MJ/kg 62
67
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 39
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 810
790
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 4.4
4.0
Thermal Shock Resistance, points 23
16

Alloy Composition

Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0 to 0.025
0.040 to 0.1
Chromium (Cr), % 24.5 to 26
15.5 to 17.5
Iron (Fe), % 61.5 to 68.5
59.4 to 66.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.5 to 4.5
1.6 to 2.0
Nickel (Ni), % 3.5 to 4.5
15.5 to 17.5
Niobium (Nb), % 0.2 to 0.8
0.4 to 1.2
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.75
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0