MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN 1.8918 Steel

Both S44635 stainless steel and EN 1.8918 steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
190
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
19
Fatigue Strength, MPa 390
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 450
400
Tensile Strength: Ultimate (UTS), MPa 710
640
Tensile Strength: Yield (Proof), MPa 580
490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
46
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
1.7
Embodied Energy, MJ/kg 62
24
Embodied Water, L/kg 170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 810
640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.4
12
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.025
0 to 0.2
Chromium (Cr), % 24.5 to 26
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 61.5 to 68.5
95.2 to 98.9
Manganese (Mn), % 0 to 1.0
1.1 to 1.7
Molybdenum (Mo), % 3.5 to 4.5
0 to 0.1
Nickel (Ni), % 3.5 to 4.5
0 to 0.8
Niobium (Nb), % 0.2 to 0.8
0 to 0.050
Nitrogen (N), % 0 to 0.035
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0.2 to 0.8
0 to 0.030
Vanadium (V), % 0
0 to 0.2