MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. EN AC-51300 Aluminum

S44635 stainless steel belongs to the iron alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
65
Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 23
3.7
Fatigue Strength, MPa 390
78
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
25
Tensile Strength: Ultimate (UTS), MPa 710
190
Tensile Strength: Yield (Proof), MPa 580
110

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.4
9.1
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 810
87
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
28
Thermal Diffusivity, mm2/s 4.4
45
Thermal Shock Resistance, points 23
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 61.5 to 68.5
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0 to 1.0
0 to 0.45
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15