MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. CC140C Copper

S44635 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
110
Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
11
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
44
Tensile Strength: Ultimate (UTS), MPa 710
340
Tensile Strength: Yield (Proof), MPa 580
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
310
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
78

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
34
Resilience: Unit (Modulus of Resilience), kJ/m3 810
220
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 4.4
89
Thermal Shock Resistance, points 23
12

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 61.5 to 68.5
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0