MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. Grade 11 Titanium

S44635 stainless steel belongs to the iron alloys classification, while grade 11 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is grade 11 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
120
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
29
Fatigue Strength, MPa 390
170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
38
Shear Strength, MPa 450
200
Tensile Strength: Ultimate (UTS), MPa 710
310
Tensile Strength: Yield (Proof), MPa 580
230

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 11
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.4
47
Embodied Energy, MJ/kg 62
800
Embodied Water, L/kg 170
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
81
Resilience: Unit (Modulus of Resilience), kJ/m3 810
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.4
8.9
Thermal Shock Resistance, points 23
22

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 24.5 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.5 to 68.5
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
98.8 to 99.88
Residuals, % 0
0 to 0.4