MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. Grade 38 Titanium

S44635 stainless steel belongs to the iron alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
11
Fatigue Strength, MPa 390
530
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
40
Shear Strength, MPa 450
600
Tensile Strength: Ultimate (UTS), MPa 710
1000
Tensile Strength: Yield (Proof), MPa 580
910

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1460
1620
Melting Onset (Solidus), °C 1420
1570
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 16
8.0
Thermal Expansion, µm/m-K 11
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.4
35
Embodied Energy, MJ/kg 62
560
Embodied Water, L/kg 170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 810
3840
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
62
Strength to Weight: Bending, points 23
49
Thermal Diffusivity, mm2/s 4.4
3.2
Thermal Shock Resistance, points 23
72

Alloy Composition

Aluminum (Al), % 0
3.5 to 4.5
Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 24.5 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.5 to 68.5
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4