MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. Nickel 625

S44635 stainless steel belongs to the iron alloys classification, while nickel 625 belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
33 to 34
Fatigue Strength, MPa 390
240 to 320
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
79
Shear Strength, MPa 450
530 to 600
Tensile Strength: Ultimate (UTS), MPa 710
790 to 910
Tensile Strength: Yield (Proof), MPa 580
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1460
1350
Melting Onset (Solidus), °C 1420
1290
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 22
80
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.4
14
Embodied Energy, MJ/kg 62
190
Embodied Water, L/kg 170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 810
260 to 490
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25
26 to 29
Strength to Weight: Bending, points 23
22 to 24
Thermal Diffusivity, mm2/s 4.4
2.9
Thermal Shock Resistance, points 23
22 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.025
0 to 0.1
Chromium (Cr), % 24.5 to 26
20 to 23
Cobalt (Co), % 0
0 to 1.0
Iron (Fe), % 61.5 to 68.5
0 to 5.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 3.5 to 4.5
8.0 to 10
Nickel (Ni), % 3.5 to 4.5
58 to 68.9
Niobium (Nb), % 0.2 to 0.8
3.2 to 4.2
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0 to 0.4