MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C12900 Copper

S44635 stainless steel belongs to the iron alloys classification, while C12900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
2.8 to 50
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 450
150 to 210
Tensile Strength: Ultimate (UTS), MPa 710
220 to 420
Tensile Strength: Yield (Proof), MPa 580
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
380
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
98
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 22
32
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 810
24 to 640
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
6.8 to 13
Strength to Weight: Bending, points 23
9.1 to 14
Thermal Diffusivity, mm2/s 4.4
110
Thermal Shock Resistance, points 23
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 61.5 to 68.5
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0 to 0.050
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Silver (Ag), % 0
0 to 0.054
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0 to 0.025
Titanium (Ti), % 0.2 to 0.8
0