MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C32000 Brass

S44635 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
6.8 to 29
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
41
Shear Strength, MPa 450
180 to 280
Tensile Strength: Ultimate (UTS), MPa 710
270 to 470
Tensile Strength: Yield (Proof), MPa 580
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
37

Otherwise Unclassified Properties

Base Metal Price, % relative 22
28
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
42
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 810
28 to 680
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
8.8 to 15
Strength to Weight: Bending, points 23
11 to 16
Thermal Diffusivity, mm2/s 4.4
47
Thermal Shock Resistance, points 23
9.5 to 16

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
83.5 to 86.5
Iron (Fe), % 61.5 to 68.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0 to 0.25
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4