MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C37100 Brass

S44635 stainless steel belongs to the iron alloys classification, while C37100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
8.0 to 40
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 81
40
Shear Strength, MPa 450
260 to 300
Tensile Strength: Ultimate (UTS), MPa 710
370 to 520
Tensile Strength: Yield (Proof), MPa 580
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
30

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.7
Embodied Energy, MJ/kg 62
45
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
38 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 810
110 to 750
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
13 to 18
Strength to Weight: Bending, points 23
14 to 18
Thermal Diffusivity, mm2/s 4.4
39
Thermal Shock Resistance, points 23
12 to 17

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 61.5 to 68.5
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
36.3 to 41.4
Residuals, % 0
0 to 0.4