MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C38000 Brass

S44635 stainless steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 81
39
Shear Strength, MPa 450
230
Tensile Strength: Ultimate (UTS), MPa 710
380
Tensile Strength: Yield (Proof), MPa 580
120

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
110
Melting Completion (Liquidus), °C 1460
800
Melting Onset (Solidus), °C 1420
760
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
21

Otherwise Unclassified Properties

Base Metal Price, % relative 22
22
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.7
Embodied Energy, MJ/kg 62
46
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
50
Resilience: Unit (Modulus of Resilience), kJ/m3 810
74
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
13
Strength to Weight: Bending, points 23
14
Thermal Diffusivity, mm2/s 4.4
37
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 61.5 to 68.5
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5