MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C65100 Bronze

S44635 stainless steel belongs to the iron alloys classification, while C65100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
2.4 to 50
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 450
200 to 350
Tensile Strength: Ultimate (UTS), MPa 710
280 to 560
Tensile Strength: Yield (Proof), MPa 580
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
57
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 810
39 to 820
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
8.7 to 18
Strength to Weight: Bending, points 23
11 to 17
Thermal Diffusivity, mm2/s 4.4
16
Thermal Shock Resistance, points 23
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
94.5 to 99.2
Iron (Fe), % 61.5 to 68.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0.8 to 2.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5