MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C65400 Bronze

S44635 stainless steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
2.6 to 47
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 450
350 to 530
Tensile Strength: Ultimate (UTS), MPa 710
500 to 1060
Tensile Strength: Yield (Proof), MPa 580
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 4.4
2.8
Embodied Energy, MJ/kg 62
45
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 810
130 to 3640
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
16 to 34
Strength to Weight: Bending, points 23
16 to 27
Thermal Diffusivity, mm2/s 4.4
10
Thermal Shock Resistance, points 23
18 to 39

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 61.5 to 68.5
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
2.7 to 3.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.2 to 1.9
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2