MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. C83300 Brass

S44635 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
35
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
42
Tensile Strength: Ultimate (UTS), MPa 710
220
Tensile Strength: Yield (Proof), MPa 580
69

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
33

Otherwise Unclassified Properties

Base Metal Price, % relative 22
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.4
2.7
Embodied Energy, MJ/kg 62
44
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
60
Resilience: Unit (Modulus of Resilience), kJ/m3 810
21
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
6.9
Strength to Weight: Bending, points 23
9.2
Thermal Diffusivity, mm2/s 4.4
48
Thermal Shock Resistance, points 23
7.9

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24.5 to 26
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 61.5 to 68.5
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7