MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. N08320 Stainless Steel

Both S44635 stainless steel and N08320 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
190
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 390
190
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 450
400
Tensile Strength: Ultimate (UTS), MPa 710
580
Tensile Strength: Yield (Proof), MPa 580
220

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 610
430
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 22
28
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
4.9
Embodied Energy, MJ/kg 62
69
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 39
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 810
120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.4
3.3
Thermal Shock Resistance, points 23
13

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.050
Chromium (Cr), % 24.5 to 26
21 to 23
Iron (Fe), % 61.5 to 68.5
40.4 to 50
Manganese (Mn), % 0 to 1.0
0 to 2.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
25 to 27
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0