MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. N08800 Stainless Steel

Both S44635 stainless steel and N08800 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
4.5 to 34
Fatigue Strength, MPa 390
150 to 390
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 450
340 to 580
Tensile Strength: Ultimate (UTS), MPa 710
500 to 1000
Tensile Strength: Yield (Proof), MPa 580
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 610
490
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
5.3
Embodied Energy, MJ/kg 62
76
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 39
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 810
96 to 1740
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
18 to 35
Strength to Weight: Bending, points 23
18 to 28
Thermal Diffusivity, mm2/s 4.4
3.0
Thermal Shock Resistance, points 23
13 to 25

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.025
0 to 0.1
Chromium (Cr), % 24.5 to 26
19 to 23
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 61.5 to 68.5
39.5 to 50.7
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 3.5 to 4.5
30 to 35
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0.15 to 0.6