MakeItFrom.com
Menu (ESC)

S44635 Stainless Steel vs. S32506 Stainless Steel

Both S44635 stainless steel and S32506 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is S44635 stainless steel and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
270
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 390
330
Poisson's Ratio 0.27
0.27
Rockwell C Hardness 24
28
Shear Modulus, GPa 81
81
Shear Strength, MPa 450
440
Tensile Strength: Ultimate (UTS), MPa 710
710
Tensile Strength: Yield (Proof), MPa 580
500

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 610
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
3.9
Embodied Energy, MJ/kg 62
54
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 39
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 810
620
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 4.4
4.3
Thermal Shock Resistance, points 23
19

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 24.5 to 26
24 to 26
Iron (Fe), % 61.5 to 68.5
60.8 to 67.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
3.0 to 3.5
Nickel (Ni), % 3.5 to 4.5
5.5 to 7.2
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0.080 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0
0.050 to 0.3